Goldstone DSCC Energy Distribution Model

B. H. Chapman
TDA Planning Office

In expectation of increases in cost and decreases in supply of currently avail-
able energy forms, the DSN is studying the installation of systems which will
provide reliable Deep Space Communications Complex energy in stable amounts
and at stable cost. One of the main factors in improving the economic viability of
such an installation is the efficiency with which the useful energy forms resulting
from the conversion of the stable energy form to be provided can be distributed
to the consumers. The aim of the following general distribution model is to provide
a method for the optimal design of a network for the distribution of several
different types of energy to users and for the optimal operation of such a network
when installed. When such a network is operational the consumers’ demand for
energy can be ascertained by real-time sampling but during the design phase
these energy demands are known only stochastically. The initial model below
describes the case of known constant demand and will form the basis of a subse-
quent model of the stochastic demand case. An algorithm to be used in the solution

of this model problem is also outlined.

l. Mathematical Model |

In detail the situation to be modeled is as follows:
Several plants and the related distribution system are to
be constructed to serve the electrical, heating, and cooling
needs of several established energy consumers whose
demand for each energy form is constant and known. The
possible locations of the plants are given, but the par-
ticular sites to be used are to be selected so as to result
in the least total construction and operational cost. Each
plant has a known cost function of its electrical capacity,
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reflecting the initial capital cost plus the operational and
maintenance cost over the expected lifetime of the plant.
The heat output of each plant is the sum of two terms:
(1) recovered waste heat, which is a known function of
the plant’s electrical output, and (2) heat obtained from
fuel directly at a known cost. A portion of this heat output
is then converted at a known cost and efficiency to chilled
water for use in cooling. Each link of the distribution
system has a known cost function of its capacity, and the
losses in each link are known functions of the amount of
energy traversing that link.
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If a particular link is to be constructed, its capacity
must lie between prescribed upper and lower bounds.
The distribution system also allows for the transfer of
electrical energy between plants, intermediate energy
distribution nodes at various sites between plants and
consumers, and substitution of electrical energy for heat-
ing and cooling energy at some known efficiencies and
costs. Thus the problem is to determine which sites are
to be used, what capacity plant to install at each selected
site, and what the distribution pattern should be for each
energy form. This is to be done so as to minimize the
total construction and operational cost while satisfying
the demands of each consumer and the capacity con-
straints on the distribution system.

In order to maintain a clear relationship between the
physical problem and the following mathematical formu-
lation, the variables and functions involved will all be
triply subscripted. The first subscript refers to the level
of the distribution system with which the variable or
function is associated. The second and third subscripts
refer, respectively, to the origin and destination within
that level of the quantity described by the variable or
function (Fig. 1).

A. System Variables

1. Level 0: Plant Variables. There are k possible sites
for total energy plants (TEP) which derive electricity,
heat, and chilled water from fuel. The variables are:

eq0; = electrical output of plant i
Hoi(eon:) = recovered heat output function of plant i
hoo: = directly derived heat output of plant i

hei; = portion of heat output of plant i used for
conversion to chilled water

Coii(hoii) = chilled water output function of plant i
e,;; = electrical energy leaving plant i for plant §

Eqij(e)

1l

electrical energy arriving at plant § when
electrical encrgy e originated from plant

2. Level 1: Primary Distribution Variables. The amounts
of the three energy types leaving the plants and arriv-
ing at the 2 electrical consumers, m heating energy
consumers, and n cooling energy consumers are:

e,;; = electrical cnergy leaving plant i for electrical
consumer §
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E,i;(e) = electrical energy arriving at electrical con-
sumer § when electrical energy e originated
from plant i

cy;; = cooling energy leaving plant ¢ for cooling
energy consumer §

C,ij(c) = cooling energy arriving at cooling energy
consumer j when cooling energy ¢ originated
from plant i

hy;; = heating energy leaving plant i for heating
energy consumer j

H,;;(h) = heating energy arriving at heating energy
consumer j when heating energy h originated
from plant ¢

3. Level 2: Secondary Distribution Variables. Subse-
quent amounts of the three energy types distributed
between consumers of the same energy type. The vari-
ables are:

e.;; = electrical energy leaving electrical consumer
i for electrical consumer §

E.;;(e) = electrical energy arriving at electrical con-
sumer j when electrical energy e originated
from electrical consumer §

C.i; = cooling energy leaving cooling energy con-
sumer i for cooling energy consumer j

C.i;(c) = cooling energy arriving at cooling energy
consumer j when cooling energy ¢ originated
from cooling energy consumer i

h,;; = heating energy leaving heating cnergy con-
sumer i for heating energy consumer j

H,;;j(h) = heating energy arriving at heating energy
consumer j when heating energy h originated
from heating energy consumer i

4. Level 3: Cooling Energy Substitution. Amounts of
electrical energy from each electrical consumer used for
substitution as cooling energy at each cooling energy
consumner are:

es;; = electrical energy leaving electrical consumer
i for substitution as cooling energy at cooling
energy consumer j

C.i;(e) = cooling energy arriving at cooling energy con-
sumer j when electrical energy e originated
from electrical consumer ¢ for substitution
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3. Level 4: Heating Energy Substitution. Amounts of
electrical energy from each electrical consumer used for
substitution as heating energy at each heating energy
consumer are:

e4;; = electrical energy leaving electrical consumer
i for substitution as heating energy at heating
energy consumer jf

H,;;(e) = heating energy arriving at heating energy con-
sumer § when electrical energy e originated
from electrical consumer i for substitution

B. Demands

e; = electrical demand of electrical consumer j

¢; = cooling demand of cooling energy consumer j

h; = heating demand of heating energy consumer j

If the energy input to a heating or cooling energy con-
sumer excecds the demand, the excess energy is dumped
as waste. In order to keep the total system energy con-

stant, this wasted energy is accounted for by the following
slack variables:

¢j = waste cooling energy dumped at cooling energy
consumer |

|

h} = waste heating energy dumped at heating energy
consumer |

(If consumer j is actually a dummy consumer repre-
senting a possible distribution node for electrical, cool-
ing, or heating energy, then ¢; or ¢; and ¢} or h; and 1/,
respectively, are set equal to 0).

C. Cost Functions

agoi(e) = cost of installing electrical generation capac-
ity e and waste heat recovery of capacity
H{e) at plant i

aoij(€) = cost of installing an electrical link of capacity
e between plant i and plant j

ay;(€) = cost of installing an electrical link of capacity
e between plant i and electrical consumer j

azij(€) = cost of installing an electrical link of capacity
¢ between electrical consumer i and electrical
consumer §

asi;(e) = cost of installing an electrical substitution
link taking electrical energy e from electrical
consumer ¢ to cooling energy consumer j and
converting it to provide cooling energy Cj;;(e)
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ay;j(e) = cost of installing an electrical substitution
link taking electrical energy e from electrical
consumer i to heating energy consumer j and
converting it to provide heating energy H ,; ;(e)

Booi(h) = cost of installing direct heat generation of
capacity h at plant i

Boii(h) = cost of installing heat to chilled water con-
version of capacity h at plant i to provide
chilled water output C,;;(h)

Biij(h) = cost of installing a heating link of capacity h
between plant i and heating energy consumer j

B.i;(h) = cost of installing a heating link of capacity h
betwcen heating energy consumer i and
heating energy consumer f

y1ij(c) = cost of installing a cooling link of capacity ¢
between plant i and cooling energy consumer |

vz2i5(c) = cost of installing a cooling link of capacity ¢
between cooling cnergy consumer i and cool-
ing energy consumer §

All of the above functions include initial capital cost and
installation cost plus the expected maintenance cost over
the expected system lifetime.

Il. Linearization of Functions

In general, all of the above cost, loss, and production
functions will be nonlinear. In order to make the mathe-
matical problem more tractable by current computational
techniques, it is desirable to replace each of these func-
tions by an approximating piecewise-linear function. This
can be done to any desirable accuracy since, in general,
the functions being approximated will be at least piece-
wise smooth. For example, consider the recovered heat
and cost functions of the electrical generation capacity
of a plant at site ¢ (Fig. 2). It is then possible to approxi-
mate Hooi(€00i) and agpi(€y0:) to within allowable error by

functions which are linear on the intervals e°,,, e!, . for
k=1...2,; as in Fig. 3.

The partition values €’ and e!,, and the approxi-
mating linear functions can be determined for example
by a piecewise-linear least squares fit simultaneously on
both functions.

The single plant in the description above with its upper
and lower bounds on electrical generation capacity is
then replaced by £,,; = 3 “pseudo-plants” with the rele-
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vant upper and lower bounds to describe the capacity
region in which each should operate.

The dichotomous variable Ay:x is then introduced such
that:

Xooir = 1 if pseudo-plant k is actually to be constructed
at plant site i

Xooix = 0 if pseudo-plant k is not to be constructed

Since at most one of these pseudo-plants will be con-
structed at plant site i, we have the additional constraint:

Rooi

Z /\um’k < 1
A=1

Since the capacity of pseudo-plant k should be zero if
it is not to be constructed and it should not be con-
structed if its capacity is zero, we have the following
constraint to force the correct logical relationship be-
tween the dichotomous and capacity variables:

0 1
Aooik €0k < €ooik < Agoik €o0ik

Each pseudo-plant will then have linear heat-recovery
and cost functions in its limited capacity range:

— * — *
Hooik(eooik) = Hypix €00irx + Hm.i/; = Hopir €ooix T Hl)ﬂi/; Aooik

aooik(eooik) = agoik €oik T af.m,rc = @poik Cooik T a:(,,-k Aooik

The same artifice may be used to piecewise-linearize
each nonlinear function appearing in the model. This
introduces the following bounds on the allowed operating
capacities of the pseudo-system elements to be defined in
doing so.

I1l. Upper and Lower Bounds on Capacities
of Pseudo-system Elements

= upper and lower bounds on electrical ca-
pacity of pseudo-plant k at plant site i, if

1 ¢
€ooirr Cooik

built

ht oo B, = upper and lower bounds on direct heat
generation capacity of pseudo-plant k at
plant site i, if utilized

h3, . P, = upper and lower bounds on capacity of

heat to chilled water conversion of pseudo-
plant k at plant site i, if utilized
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€} 1 €05, = upper and lower bounds on capacity of
pseudo-electrical link k between plant site
i and plant site § if built

et ;e = upper and lower bounds on capacity of
pseudo-electrical link k between plant site
i and electrical consumer j if built

¢t €% = upper and lower bounds on capacity of
pseudo-cooling link k between plant site i
and cooling energy consumer j if built

ht, .. h% = upper and lower bounds on capacity of
pseudo-heating link k between plant site
and heating energy consumer f if built

el €% 5 = upper and lower bounds on capacity of
pseudo-electrical link k between electrical

consumer § and electrical consumer § if
built

cti i €%y = upper and lower bounds on capacity of
pseudo-cooling link k between cooling en-
ergy consumer i and cooling energy con-
sumer § if built

h1

LM% = upper and lower bounds on capacity of

2iik
pseudo-heating link k between heating en-
ergy consumer i and heating energy con-

sumer § if built

et €5, = upper and lower bounds on capacity of
pseudo-electrical substitution link k from
electrical consumer i to cooling energy
consumer j if utilized

el €25 = upper and lower bounds on capacity of
pseudo-electrical substitution link k from
electrical consumer i to heating energy
consumer { if utilized

As in the above example, the construction or non-
construction of each pseudo-system element is controlled
by the use of dichotomous variables.

Xooir = 1 if pseudo-plant k at plant site i is to be used
for electrical generation (k=1...%;)

pooiz = 1 if pseudo-plant k at plant site i is to be used
for direct heat generation (k = 1...m,,;)

moiix = 1 if pseudo-plant k at plant site i is to be used
for production of chilled water (k = 1...m;;)

Xoije = 1 if plant site i is to be connected to plant site §
by a pseudo-electrical link with capacity be-
tween ef,  and e}, ;, (k = 1... ;)
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Mo =1
paijr = 1
pu =1
Mot = 1

P2ijk — 1

Vaijk — 1

Agige =1

Aaip =1

if plant site i is to be connected to electrical
consumer j by a pseudo-electrical link with

capacity between €9, and el (k =1... L)

if plant site i is to be connected to heating en-
ergy consumer § by a pseudo-heating link with

capacity between b8, , and bt (k=1...my;;)

if plant site i is to be connected to cooling en-
ergy consumer j by a pseudo-cooling link with
capacity between ¢!, and ¢t, , (k = 1... nyi)

i 1ijk

if electrical consumer i is to be connected to
electrical consumer § by a pseudo-electrical
link with capacity between e!,; and el
(k = 1...£gi]')

if heating energy consumer 4 is to be connected
to heating energy consumer j by a pseudo-
heating link with capacity between h?,;, and
hi e (k=1...my;)

if cooling energy consumer i is to be connected

to cooling energy consumer j by a pseudo-

cooling link with capacity between c9,,, and
L (k=1...nyy)

if substitution from electrical consumer i to
cooling energy consumer jf is to be provided
by a pseudo-electrical substitution link with
capacity between ez and el (k= 1... Liij)

it substitution from electrical consumer i to
heating energy consumer j is to be provided
by a pseudo-electrical substitution link with

capacity between e?,and el (k= 1.. L)

The constant demand problem can then be formulated as
the following mixed integer linear program:

Minimize

Z Z Z Z {auklez]kl + a uk!/\ukl}

i=0

This will give the minimum total cost of the system

with the following constraints:

Subject to
=0orl

)\1 ks ik, Vijkt —

’ ’
hs, Ch, €ijn, P gy Cim=0

The following constraints arise from the energy balance
(energy flowing in equals energy flowing out) at each

node of the distribution system:

Looj ko Roiy
Zeowk + Z Z {Em;meowx + EOLJK)\OMK}
7 =
ko Rojr o by
~ZZewm+ZZemK fori=1...k
ijl K=1 r=1 K=1

ko0 oo

Z {Hoojkeoojk + H;Ojk)\oojk} + Z hoojK
K-1 K=1

Moj § m Magr
=2 hoy T 2 2 hui forj=1...
K=1 r=1 =1
Mojj
> {Cojihojix + Cljmpojin}
K=1
nijr
‘“ZZLWK forj=1...
r=1 K=1
kb
> > {Eiixeiii + Elijchiije}
$4=1 K=1
| R .
+ Z Z {E2ine2in + E%ijkAzijc)
i=jK=1
iy
BLjr n i m lair
e+ Z 2t 30 D a2 D s
r=1K=1 r=1K=1 r=1K=1
T#]
fori=1...
K Mg

> > AH i + Hiijop e}
K=1

i=1

+ Z > Z D B+ Blijkapign) m maij
=0kt + 303 {Hosjihaign + Hijjepoi o}
=
+ Z Z Z Z {'Yukicljkl + Yz]leukl} I
i=1 g k
245
) -+ Z {HM,]Ke‘M]K + H«njx)\u:m}
where the sums over j and k are taken over all possible z:1
combinations corresponding to the value of the distribu- maj
tion level subscript i and the type of the variable (e, h, =h; +hj + Z > hoj forj=1...m
or ¢). FEkD
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% 147
*
>, {CrijCrise T Clijovvis}

i=1K=1

n M2ij

+ E Z {CaijCaijn + C2ijveiin}

=1 K=1
i£]

2 gy

+ Z Z {C i jx€si5x + C §ijkhaijn}

i=1 K1

n o M

=cjtcit 2D Cum

rt].K 1
T

forj=1...n

The following coustraints, besides keeping the capacity
of each pscudo-system element between the relevant
upper and lower bounds if it is to be constructed, also
force the correct logical relationships between the ca-
pacity variables and the associated dichotomous variables.

Aijre €% jia < €ijxe < Aijke €75 jxa
i ke hoisz < hisz < Wi jrt h[jki
< <

v ikt Cl jrt Cijke Vi Ch
where the subscripts i, j, x, and £ run over all allowable
combinations, depending on the type of variable.

The remaining set of constraints insures that at most
one of the possible pseudo-system elements in each case
is to be constructed as an clement of the real system.

1 jx

Z /\[jK}l<1
i-1

my ik

Z ALLinl < 1

i=1

ik

Z ngK1<1
b=1

where the subscripts i, j, and « run over all allowable
combinations depending on the type of the associated
capacity variable.

IV. Method of Solution

The most favorable results in solving large mixed
integer linear programs like the above are currently given
by branch and bound methods (or specialized methods
which utilize branch and bound methods as part of their
procedure.) The method is a search procedure which
estimates or evaluates the maximum objective function
value for all possible combinations of values of the
integer restricted variables. It begins with a large set of
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possible combinations of values for the integer-restricted
variables and then divides this set into successively
smaller subsets.

At each step an estimate is made of the maximum
objective function value given that the combination of
values of the integer restricted variables lies in each sub-
set. Also at each step this estimate of the maximum objec-
tive function value for each subset is compared with the
objective function value of a solution which satisfies the
constraints and has integer values for the integer-
restricted variables. Subsets whose maximum objective
function values cannot exceed the value of the best cur-
rent integer solution are then no longer considered as
candidates for containing the optimum combination of
values of the integer-restricted variables.

If at any step an integer solution is found whose evalu-
ated objective function value is larger than that of the
current best integer solution then it is taken as the up-
dated best integer solution. Continuing in this manner
the subsets are partitioned more and more finely and are
eliminated as their maximum possible objective function
values fall below the increasing objective function value
of the best current integer solution. Eventually a point
is reached where one of the subsets will contain only the
optimum combination of values of the integer-restricted
variables and this solution will then become the current
best integer solution. From this point on, the comparison
of objective function values will eliminate all the remain-
ing subsets of possible combinations of values of the
integer-restricted variables and establish this solution as
the true optimum.

In more detail, the method is illustrated by the accom-
panying structured Level 1 flowchart. When the given
mixed-integer linear program is feasible, it is solved as a
linear program neglecting the integer constraints to ob-
tain the objective function value a,,. Prior to solving this
problem there was no current feasible solution in which
the integer-restricted variables took on integer values;
so the objective function value of the current best integer
solution x,. is set equal to — . Likewise before this
problem was solved there was no estimate of an upper
bound on its objective function value so UBp was set
equal to .

If the solution of this problem is such that all integer-
restricted variables have integer values, the optimal solu-
tion has been found immediately. If not, one of the
variables whose integer constraint is not satisfied in the
current solution is chosen for the branching process. Here
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two new subproblems are created by restricting the value
of the unsatisfied variable to be greater than the integer
immediately above its current value and to be less than
the integer immediately below its current value. The
initial feasible region is then divided into two disjoint
regions, one of which must contain the optimum solution,
since the branching variable must be integer-valued and
only a non-integer portion of feasible region has been
removed between these two disjoint regions. One of these
subproblems is then chosen to be solved immediately as
a linear programming problem neglecting the integer
constraints. The other subproblem is stored in a list with
an upper bound on its objective function value to be solved
later. This process is then repeated with the solved sub-
problem becoming the current problem at each step until
one of its branched descendants vields a solution whose
integer-restricted variables have integer values. The value
of the objective function of this solution is recorded as
X, and any subproblem in the stored list whose upper
bound is less than x,. can be eliminated since its feasible
region could not have contained the optimum solution.
The method then backtracks by choosing a problem from
the stored list to begin the procedure again.

At each branching step the feasible region is split into
two disjoint regions and the non-integer region between
them is removed from the feasible region. Hence, at any
point in the procedure, exactly one of the subproblems
contains the optimal solution (if it is unique). In cases
where one of the integer restricted variables is not con-
strained above but the problem does have a finite opti-
mum solution, the method will keep reducing the infinite
portion of the feasible region until the upper bound on
the objective function value associated with that region
falls below the objective function value of the current
best integer solution at which time it can be eliminated.
This leaves only the disjoint finite feasible regions which
the procedure continues to divide while eliminating the
non-integer regions of the integer restricted variables
until the objective function values of all remaining
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feasible regions have been examined and the optimum
solution found or infeasibility demonstrated.

The details of the methods used in the branching and
backtracking subroutines to determine which of the prob-
lems is to be solved next and in finding upper bounds on
the objective function values are given in an appendix.
This procedure has been used successfully on large mixed
integer programming problems with on the order of one
hundred 0-1 integer variables and several thousand con-
tinuous variables (Refs. 1, 2), and hence will be effective
in dealing with problems having a few consumers and
plants and involving mildly non-linear cost and produc-
tion functions.

In cases where there are many consumers and plants
and more non-linear functions, however, the number of 0-1
integer variables increases enormously to the point where
branch and bound methods cannot solve the problem
within a reasonable amount of computer time even if
many of the obviously uneconomical combinations of
values of these variables have been climinated before-
hand. In cases such as this, a refined procedure utilizing
“Bender’s decomposition” can be used. This is an iterative
procedure which at each step deals only with decoupled
problems describing the distribution of individual com-
modities (here, energy types). Besides being able to deal
with much larger problems (problems having about two
thousand 0-1 integer variables and about twenty thou-
sand continuous variables have been solved (Ref. 3)).
The tact that at each step the procedure deals with only
the usual “transportation problem” involving a single
commodity allows the problem of stochastic demand for
these commodities to be dealt with much more simply
than the case where the transportation problems are
coupled together.

An important problem for DSN energy distribution is

then the formulation of the full stochastic problem in
terms of a Bender’s decomposition algorithm.
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Fig. 1. Total energy plant
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Fig. 2. Original recovered heat and cost functions
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RESTRICTED
VARIABLES
= I’I;ITEGER

BRANCH

CHOOSE AN UNSATISFIED INTEGER
VARIABLE x_ WITH CURRENT VALUE

apO = npo +fp0 WHERE n 0 IS
AN INTEGER AND 0 < FPO <1

CREATE TWO NEW SUBPROBLEMS BY
APPENDING TO THE CURRENT
PROBLEM P THE CONSTRAINTS:

x >n ~+tTANDx <n

p= PO p = p0

CALCULATE UPPER BOUNDS ON THE
OBJECTIVE FUNCTIONS OF THESE
NEW SUBPROBLEMS

SET CURRENT PROBLEM P = ONE OF
THESE NEW SUBPROBLEMS AND PLACE
THE OTHER IN LIST WITH ITS UB

[

BRNCHNBD

SET
P = MIXED INTEGER PROBLEM
TO BE SOLVED

LIST = EMPTY
Xoe T "%
UBp = @
]
]
SOLVELP

IF UBp < xq SET 500 = UBP

IF NOT SOLVE CURRENT PROBLEM
P AS A LINEAR PROGRAMMING
PROBLEM NEGLECTING INTEGER
CONSTRAINTS

PIs
INFEASIBLE
OR

90 < X0c
?

BACKTRAK

IF LIST IS NONEMPTY
CHOOSE FROM LIST
THE NEXT SUBPROBLEM
TO BE SOLVED AND
SET ITEQUALTO P

NEW INTEGER SOLUTION:
RECORD VALUE OF THE
OBJECTIVE FUNCTION X0c

1

BACKTRAK

IF LIST 1S NONEMPTY
CHOOSE FROM LIST
THE NEXT SUBPROBLEM
TO BE SOLVED AND
SET IT EQUAL TO P

Fig. 4. Flowchart for BRNCHNBD
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Appendix A

Details of Methods Which Can Be Used in BRANCH and
BACKTRAK Routines

. BRANCH

In the optimal solution of the current linear program-
ming (LP) subproblem some of the integer-restricted-
variables will take on non-integer values. In order to force
these variables toward integer values, two more tightly
constrained subproblems are formed. Let the integer-
restricted variable x, have @, = n,, + f (where n,, is an
integer and 0 <{f,, < 1) as its value in the current opti-
mal solution. The feasible set for the current subproblem
is then reduced by appending the further constraint:
x, > n,, + 1 to yield one subproblem and by appending
%, < nyo to yield the other subproblem. The decision of
which unsatisfied integer variable to choose for this
branching process is often based on the calculation of
penalties which estimate the change in objective function
value due to the newly appended constraints.

A. Simplex Algorithm

As a preface to the following procedures, some of the
salient points of the simplex algorithm will be described.
Suppose we have the standard linear programming
problem:

Maximize the linear form

no_
Z(l(,jx]'
iz

where the a,; are constants, subject to

Ax=Db
x; =0 i=1...n
where
X = (X, X0y Xy)
b= (by,b,, ..., by

and A = (a;;) is-an m X n matrix. Suppose also that we
have m lincarly independent columns of A which yield
the following feasible linear combinations:

ay, a, + a,, Ay + -+ F ay,, Gmo = b

where

aj(,Z 0
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when

Lelo= I, .., 0, C{1,...,n}
The x; = x,, are called the current basic variables. If we
then set the values of the remaining variables equal to
Zero:

X, =0 fork; e}
we obtain a current basic feasible solution. The x;, are
called the current non-basic variables. The value of the

objective function for this current basic feasible solution
is:

ki3

Qoo — Z Qop; jo
i=1

The columns corresponding to current non-basic vari-
ables can then be expressed as linear combinations of the
columns corresponding to the current basic variables.
This can conveniently be recorded in tableau form, i.e.,

n

=

Ay, = > Tjiay; (synthetic xx,)
i=1
0 ——
b= Z aj, a"j
=1
can be represented as
b xkl xk2 s xki xkn—m
Xo Qoo ay, Qys e Ay Ay, n-m
X, Qs a, Gy e ay; Qi n-m
Xm ‘Tmo aml (_imz e ami A, n-m
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Appended to the tableau is a row of reduced costs
denoted by a,, a,; giving the decrease in objective function
value when one unit of synthetic x;, in the current basic
feasible solution is replaced by one unit of real x;,. If an
arbitrary amount of synthetic X, is replaced in this
manner, the resulting solution may be infeasible or feasi-
ble but not a basic feasible solution. However, the simplex
algorithm introduces as much as possible some currently
non-basic variable x;,, which has a negative reduced
cost, while still retaining feasibility. This results in a new
basic feasible solution as follows. If the value of xx; is
increased from 0 to vy, then to maintain feasibility:

Ay, Gyt @y, Aoy + 0 Ty

i

Ao + a.ki vki = b
the value of the basic variable X, must change to:
- = -
Qpo = Apy — Qpi Vg,

If it is assumed that the problem has a finite solution,
then at least one of the @, must be greater than zero.
Since the value of all basic variables must be greater than
or equal to zero, vy, can be increased until a, =0 for
some basic variable X,. Then x, becomes a non-basic vari-
able and x;; = X, enters the basis in the amount @,, = ;.
The value of the objective function is then increased
from @y to @ — @y vy, (recall that a,; < 0).

Since b is represented by a unique linear combination
of the columns of A corresponding to the current basis,
and since (in the non-degenerate case) the value of the
objective function increases with each change to a new
basic feasible solution, there must be a unique objective
function value associated with each basic feasible solu-
tion, Hence, the algorithm can never return to the same
basis twice and as the procedure is repeated, for problems
assumed to have finite optimum, each basic feasible solu-
tion is examined until in a finite number of steps one is
found for which all the reduced costs are positive. For
this solution no currently non-basic variable can be intro-
duced into the basis without decreasing the objective
function value; hence, this must be the optimal solution.

B. Penalties

Suppose we have solved the following mixed integer
linear program:

Maximize
n
Xo = Z AojXj
j=1
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subject to Ax = b, where A is an (m X n) matrix
=0

x; = integer forjel C {1...n}

but as a linear program neglecting the integer constraints.

Regardless of the LP method used in the solution the final
simplex tableau can still be obtained. Let

{0, }

be the set of non-basic variables and

fork;ej C {1...n}
{Xj — x!j} fOr 21‘8]0

be the set of basic variables. The tableau is then given as
follows:

b X, X, cee X, Xk,
Xo 220 (223 Qg ceee Ay Ay, n-m
X, Qi a; a a; Qi n-m
an aﬂlo .. a))’ll aﬂlz e a"l i a?n, n—-m

(1) The column of A corresponding to the non-basic
variable x;, is expressed as a linear combination of
the columns of A corresponding to the basic vari-
ables (synthetic xy,)

n
A, — Zaji ay;
i=1

(2) The first column of the tableau gives the values of
the objective function and the basic variables in the
final solution

m
Qoo = Z Qor; Ajo
i=1

(8) If the non-basic variables x;; are changed in value
from zero to vy, then in order to maintain feasi-
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bility the value of the basic variables X, must
change to

n-n
- = —
Apo = Apo — Z api Uki

i=1

forp=1...m

(4) The decrease in the objective function value when
one unit of synthetic x;, in the optimal solution is
replaced by one unit of x;; is given by a,; (the
reduced cost of x:,), and since the solution is
optimal the reduced costs must all be positive.

Suppose that the basic variable X, has the current
optimal value a,. If a new problem is created by append-
ing to the current problem the constraint: X,>3, + «
then the value of the objective function must decrease
since the feasible region has been reduced. Since the
number of constraints has been increased by one in the
new problem, one of the currently non-basic variables
xy, must enter the basis of the new problem.

If the value of « is small enough the rest of the basic
variables will remain the same as in the current optimal
solution. From the current tableau the minimum amount
in which Xy, may be introduced can be determined (as
in 3 above)

- = —_ — —_
Apy = Apy — apqvlr,[ 2 Apo + «
«
Vg > _— =
a Ayy

since x;, must be introduced in a positive amount must
have a,, < 0

The decrease in objective function value from the cur-

rent optimum when Xk, is introduced in the amount Ok,
can then be determined from the reduced cost:

— [44
D 2 (1291 — =
Upy

Considering all of the non-basic variables which may
enter the basis of the new problem in this manner, the
current objective function value must be decreased by

at least:
. Ty
D,=¢ min | 22
<o Qpj

and if this minimum is taken for j = ¢ then the amount
of the non-basic variable xx, in the solution must increase
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from zero to

a
Uy = ——=
? pq

Similarly, if a new problem is created by appending

to the current problem the further constraint: x, < @, — g8
the degradation of the objective function value must be

at least
D, = g min ﬂj‘
— i a,;
pi>0 pi

and if this minimum is taken for j = r, then the amount
of the non-basic variable x;_ in the solution must increase
from zero to

These results may now be applied to an integer-restricted
basic variable x, which has the current optimal value

Qpo = Npo + o
where n,, is an integer and 0 < f,, < L.
Setting
a=1=f
(corresponding to adding the constraint X, >>n,, + 1)
B = fro
(corresponding to adding the constraint X, < n,,)

the degradations of the objective functions must be at least

Du= (1~ f)* min [~ i—}

1 ayj

a’])j <0

Dd = fpo « min Qo
_ 9 a. .
ap]->0 al)]

If the minima are taken for j = ¢ and j = r respectively,
then the amounts of the currently non-basic variables x;
and x;  must have increased in the optimal solutions of
the new problems. However, if either Xk, Or X, is an
integer restricted variable, its amount in any integer solu-
tion of the new problem must have increased from its
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current zero value by an integer amount of at least one.
The degradations of the current objective function value
must therefore be at least equal to the reduced costs
Goq OF Gy,

Thus, we can formulate two penalties which can be
used to find upper bounds on the objective functions of
the more tightly constrained problems created from the
original problem.

ayj

S(l—fﬂo)li~a”j:| j#1  (ie.,x, # integer)

Ph = min
. ‘—107'

P <0 max{(l—fpn)[—:—],ﬁﬂj} ]EI
. ay;

which gives as an upper bound on the objective function
for the original problem with the appended constraint
X, < n,, the value

UB =y, — P

)/ Eﬂi — .
maxlf,m En s o jel

which gives as an upper bound on the objective function
for the original problem with the appended constraint:
X, < ny, the value

UB—"ZZ—O():P;})

A stronger upper bound on the value of the objective
function of a subproblem which was obtained by more
tightly constraining the current problem can be obtained
by a Gomory cut. Gomory showed that if the integer-
restricted variable X, is unsatisfied in the LP solution of
the current problem and has the value @, = ny + fp,
then any feasible integer solution of the current problem
(and hence any feasible integer solution of a more tightly
constrained subproblem) must satisfy the following addi-
tional inequality:

—foo — Z f;j (—x;) =0
J =1
where
Tp; = Npj + fo;
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and
ay; ay; = 0and gl
fpn(*"api) _Cij <0andj,€1
]"~ — (1 - fzm)
" foi fpigfﬁoandfsl
]. - j .
fp<o_1( _—ffo—p)) foi > froandjel

If this inequality is appended as a constraint to the
current problem, then the degradation of the objective
function for this subproblem from the dual-simplex
method must be at least

je{1...n} f[)j

Using this value it is now possible to give a penalty for
satisfying the integer requirement of any currently un-
satisfied basic integer restricted variable:

Ty — .
fro EZ']_ d,;>0andj¢l
(1~fp0)[‘%] @y < OandjfI

P?,= min "

je{r..on) \ fﬂo < diel
aojﬁ.? fﬁf\f?’oan Je
— (l_fo .
Gyj 1 —f:j; fri > froandjel

An upper bound on the value of the objective function
of any integer solution attainable from the current prob-
lem is then given by

UB =G, — P2,

A choice may now be made, based on these penalties,
as to which unsatisfied integer restricted variable is to be
used for branching. The most commonly followed pro-
cedures are as follows:

1) Calculate the penalties P2 and P% for all currently
unsatisfied integer restricted variables.

~Choose the variable associated with the smallest
penalty as the branching variable.

—Create two new subproblems by appending to the
current problem the constraints: X, 2> n,, + 1 and
Xp < myo
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—Choose the new subproblem associated with the
smaller penalty for immediate solution.

~Place the other new subproblem in LIST with its
upper bound (determined from P or P4 and P%).

This procedure is based on the assumption that in most
cases the smaller penalty will reflect the smaller true
degradation, and hence that an integer solution will be
reached along this branch with a high objective function
value. If this assumption is not justified, a refinement of
the above procedure known as node swapping can be
used:

la) Compare the true degradation of the subproblem
which was solved immediately with the penalty of
the postponed subproblem.

-If the truc degradation exceeds the penalty,
solve the postponed subproblem to find its true
degradation, then choose the subproblem with the
lower true degradation as the problem from which
to continue branching.

~1If the true degradation of the immediately solved
subproblem is less than the penalty of the post-
poned subproblem, then the subproblem solved
must have the lower true degradation and is the
problem from which branching should continue.

Or better still

2) Calculate the penalties P2 and P} for all currently
unsatisfied integer-restricted variables.

—Choose the variable associated with the largest
penalty as the branching variable.

—Create two new subproblems by appending to the
current problem the constraints: X, > n,, + 1 and
Xp < n])()

—Place the new subproblem associated with the
larger penalty in LIST with its upper bound (deter-
mined from P? or P; and P%).

—Choose the other new subproblem for immediate
solution.

This procedure has the advantage of postponing the
problems which are known to have the smallest objective
function values until later in the search when presumably
there will be an integer solution available with a larger
objective function value in which case the postponed

1326

subproblem need not be solved at all since it could not

possibly be optimal.

C. Shortcomings of the Penalty Approach

In cases where the number of .constraints is very large,
however, the penalty method of directing the scarch for
an optimal integer solution breaks down and the search
becomes essentially random. The reason for this is that a
calculated penalty will not represent in any manner the
true degradation of the associated subproblem. In fact,
the larger penalty may be in the direction of the much
smaller true degradation. This is illustrated in Fig. A-1
where the feasible set of the current problem has been
projected on the (X, x,) plane.

To direct the search in these cases, branching can be
based on priorities. The branching variable is chosen as
the unsatisfied integer-restricted variable in the solution
of the current problem which is highest on a priority
list supplied exogenously by the user. The postponement
or solution of the newly created subproblems is then
based on penalties (perhaps with node swapping). The
priority list may be determined from the user’s knowledge
of which variables will have the greatest effect on the
overall system or, failing this, priori"cics may be assigned
in order of the cost coefficient values in the original
objective function.

See the Level 2 flowcharts in Fig. A-1 that describe
the above methods (note that the flowchart for
BRANCHIA utilizes the flowchart for BRANCHI as a
Level 3 flowchart)

1. BACKTRAK

In most cases the procedure of further constraining
unsatisfied integer-restricted variables will eventually
lead to a point where the subproblem chosen for branch-
ing cannot usefully be further constrained. This can
happen if it becomes infeasible or if its value falls below
the value of the best integer solution currently available
or if it yields a new best integer solution. In these cases
it is necessary to have a procedure for choosing a prob-
lem from the stored list from which to continue the
search. The earliest such procedure used was LIFO (last
in-first out) in which the next problem chosen was the
last problem placed in the list which has an upper bound
greater than the current best integer solution value and
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was dictated by the serial access nature of the storage
devices available when it was first implemented.

In general, such a choice of procedure may be far from
optimal. An improved procedure is to choose as the next
problem the problem in the stored list which has the
largest upper bound on its objective function value. This
procedure takes advantage of the newer random access
storage devices but still not in the most efficient manner.
The disadvantage of this procedure is that it takes into
account only the objective function value and excludes
other, perhaps equally important, properties of the stored
problems: primarily, the amount of work necessary to
bring the chosen problem to an integer solution. A current
method which takes both of these factors into account
is the best projection criterion.

A. Best Projection Criterion

Let the optimal value of the objective function for the
original mixed-integer problem with the integer require-
ments relaxed be x| and the value of the objective func-
tion of the latest integer solution found be x!. If the first
integer solution has not been reached, some estimate,

possibly inaccurate, of the value of x; may be given.
Define the sum of integer infeasibilities

e

§ = Z min {fpo, 1- fpo}

p=1
11161

as a measure of how much the integer restricted variables
in the problem differ from integer values in the solution.
If the objective function value x% of each outstanding
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problem presently stored in the list is plotted against its
sum of integer infeasibilities s* and then projected par-
allel to the line between (s°,x2) and (0, x!) onto the line
s = 0 we get as the projected value

(LR
. X0 )

o _ of
Pr =% $

SO
See Fig. A-3.

Here

gives an estimate of the marginal degradation of the
objective function value for a unit decrease in the sum
of integer infeasibilities and hence py is an estimate of the
objective function value which can be obtained in an
integer solution (s = 0) attainable from the current out-
standing problem k and is of course more accurate when
s* is small. The potential objective function value of a
problem can be estimated from its upper bound while an
estimate of its sum of integer infeasibilities can be ob-
tained from its value in the parent problem which
branched to yield the stored problem. The next problem
chosen for solution is then the one with the largest pro-
jected integer solution value p*. If the value of A is
overestimated, more weight is placed on objective
function value in deciding which outstanding problem is
to be chosen next for solution. If the value of A is under-
estimated, more weight is placed on the proximity to an
integer solution in this decision.
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Fig. A-1. A larger penalty in the direction of
smaller degradation
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( BRANCH! )

COMPUTE Ug,, FROM
P°, Pl , AND

PENALTIES
CALCULATED
FORALL
UNSATISFIED
INTEGER
RESTRICTED
VARIABLES
?

CHOOQOSE UNSATISFIED
INTEGER RESTRICTED
VARIABLE XP WITH

THE SMALLEST PENALTY
FOR BRANCHING

il

CREATE TWO NEW SUBPROBLEMS
BY APPENDING TO THE CURRENT
PROBLEM THE CONSTRAINTS:

X = +1

p~ "p0

Xp < npO

SET P = SUBPROBLEM
ASSOCIATED WITH THE
SMALLEST PENALTY

1

PLACE THE OTHER
SUBPROBLEM IN LIST
WITH ITS UPPER BOUND

( BRANCH2 )

COMPUTE UB_ FROM
phi Pl AND BB

Ul

PENALTIES
CALCULATED
FORALL
UNSATISFIED
INTEGER
RESTRICTED
VARI:«BLES

CHOOSE UNSATISFIED
INTEGER RESTRICTED
VARIABLE X WITH
THE LARGEST PENALTY
FOR BRANCHING

|

CREATE TWO NEW SUBPROBLEMS
8Y APPENDING TO THE CURRENT
PROBLEM THE CONSTRAINTS:

X = +1
p= "p0

p0

X <n
P

PLACE THE SUBPROBLEM
ASSOCIATED WITH THE
LARGER PENALTY IN LIST
WITH ITS UPPER BOUND

l

SET P = OTHER SUBPROBLEM

Fig. A-2. Flowcharts for BRANCH1, BRANCHZ2, and BRANCH1A
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BRANCH1A

ARE

SOLVED AND

POSTPONED

SUBPROBLEMS

TO BE COMPARED
?

1S
DEGRADATION
OF SOLVED

BRANCH1 SUBPROBLEM
LESS THAN PENALTY
BRANCH AS IN OF POSTPONED

BRANCH1 ABOVE

SUBPROBLEM
?

SOLVELP

SOLVE THE POSTPONED
SUBPROBLEM AS AN LP
NEGLECTING THE INTEGER
RESTRICTIONS

BRANCH?1

IS
DEGRADATION
OF SOLVED
SUBPROBLEM LESS
THAN DEGRADATION
OF POSTPONED
SUBPROBLEM
?

BRANCH AS IN
BRANCH1 ABOVE

SET P = IMMEDIATELY SET P = POSTPONED
SOLVED SUBPROBLEM SUBPROBLEM
BRANCHI1 BRANCH1
BRANCH AS IN BRANCH AS IN
BRANCH1 ABOVE BRANCH1 ABOVE

I |

Fig. A-2 (contd)
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Fig. A-3. Objective function versus sum of infeasibilities
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